

CryptoMind AI

Exploration beyond human intelligence

"Artificial Intelligence +" opens up a new life

White paper

CRYPTOMIND AI

Contents

Chapter 1: Ecological Vision	4
Chapter 2: Background analysis	6
2.1 Industry background	6
2.2 Concept Introduction	8
1) artificial intelligence (AI)	8
4) Blockchain	11
Chapter 3: CryptoMind AI Introduction	13
3.1 What is CryptoMind AI	13
3.2 Matrix operation principle	13
3.3 Characteristics of CryptoMind AI	15
Chapter 4: Innovation/ Application	17
4.1 Project innovation characteristics	17
4.1.2 Smart contract interaction	18
4.1.4 High efficiency of operation	19
4.2 Application scenarios	20
4.3 Implementation of intelligent protocol	21
4.3.1 Reputation	21
4.3.2 Authentication	21
4.4 Core principles of CryptoMind AI	21
1) Verifiability and authenticity	22
2) Certification	22
3) Authorization	22
4) Cooperation	22
4.5 Computing power investment management products	22
Chapter 5: CryptoMind AI Economy	24
Chapter 6: Business Model	27
6.1 Development, management and security protection of CryptoMind AI	27
6.2 CryptoMind AI Distributed artificial intelligence technology	28
Chapter 7: Application of blockchain technology	29
7.1 Overall system logic	29
7.2 Develop the service layer	30
7.3 User service layer	31
7.4 Lower level services	32
7.4.1 Security mechanism	32
7.4.2 Consensus mechanism	33

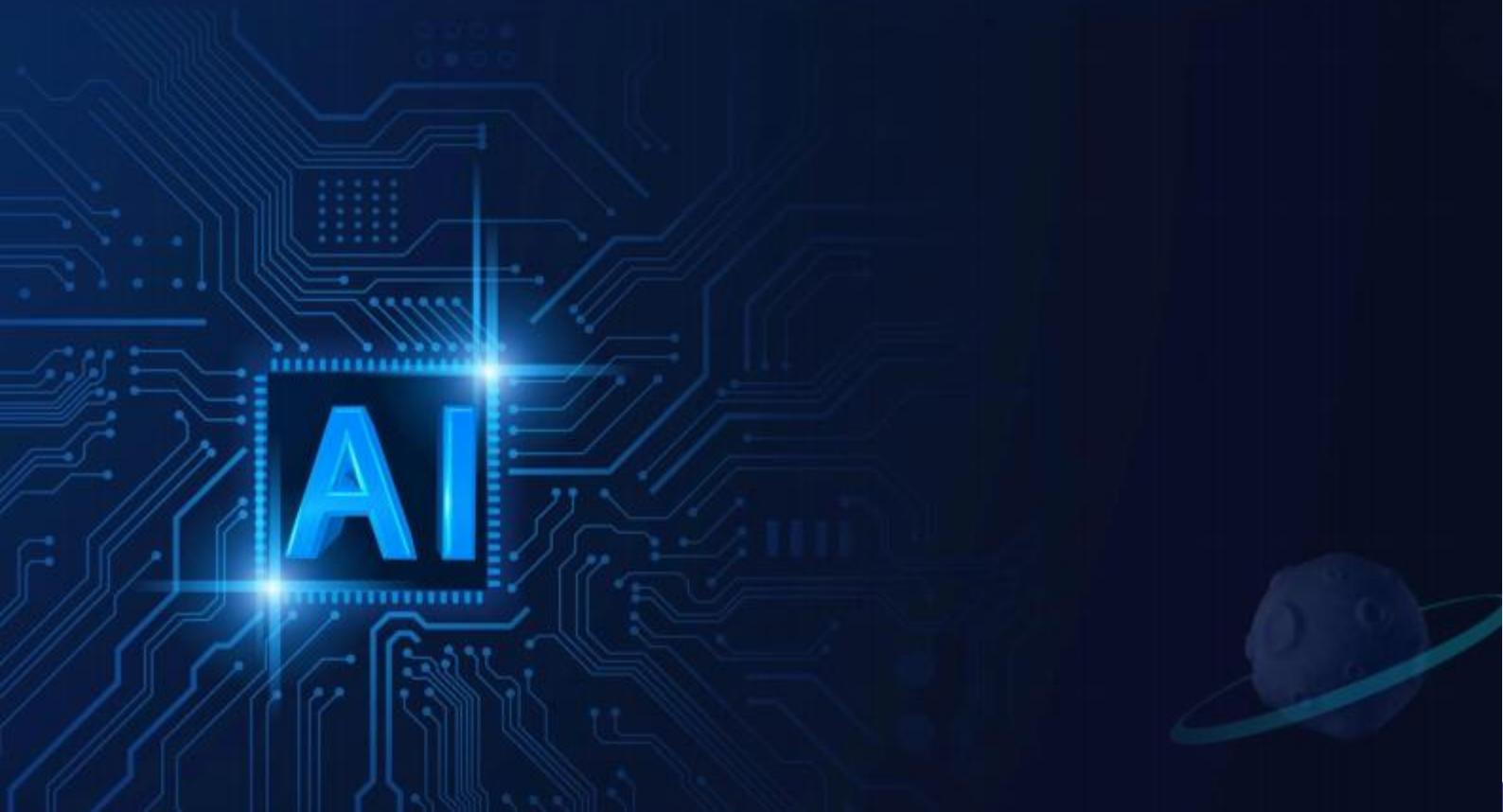
CRYPTOMIND AI

7.4.3 Equity management	33
7.4.4 Distributed control structure	34
7.4.5 Data block structure	35
7.5 CryptoMind AI Random number generation	35
7.6 CryptoMind AI difficulty adjustment	36
7.7 CryptoMind AI P2P protocol	38
Chapter 8: Profit Model	40
8.1 Service Profit Model	40
8.2 Trading Profit Model	40
Chapter 9: The Future	41
Chapter 10: The Council	42
10.1 Management agencies	42
10.2 Community governance structure	42
Chapter 11, Technical Team	45
1. CryptoMind AI Foundation	45
2. Team members	45
Jason Loong	46
12.1 Risk Disclosure	47
12.2 Disclaimer	49

chapter1:Ecologicvision

In movies and science fiction, we often imagine AI as an evil machine with ill intentions that wants to replace humans; but in fact, most of the thorny problems in our daily lives can be solved by "AI".

From ChatGPT applications to SIRI autonomous vehicles, artificial intelligence (AI) is rapidly advancing. While science fiction often portrays AI as robots with human-like characteristics, AI can encompass any technology from Googles search algorithms and IBM Watson (an AI program) to automatic weapons.


AI is a bold attempt to surpass the self after the high development of human intelligence, and the emergence of CryptoMind AI will be a great innovation in the history of AI.

CryptoMind AI is an artificial intelligence blockchain, serving as an ecosystem platform for AI and CryptoMind AI blockchain applications, leading the future development of top-tier technological fields today. The goal of the CryptoMind AI ecosystem platform is to provide users with various DIY AI services, covering areas such as think tanks, healthcare, agriculture, new energy, wine, entertainment, luxury sales, biotechnology, and beauty industries. The CryptoMind AI blockchain will also serve as a data and application development platform for other AI technologies, promoting the integration of blockchain with AI neural networks. The CryptoMind AI blockchain protocol uses a token mechanism, issuing Tokens called CM AI to provide a consumer-facing, decentralized AI platform for users and developers. Users do not

need to understand encryption or blockchain technology to enjoy AI services using CM AI tokens.

We foresee the impact of AI on the future, and we will look at the next great technological era in human development. CryptoMind AI believes that a new age of AI economy has arrived, and such a new era will first be realized through CryptoMind AI.

CryptoMind AI

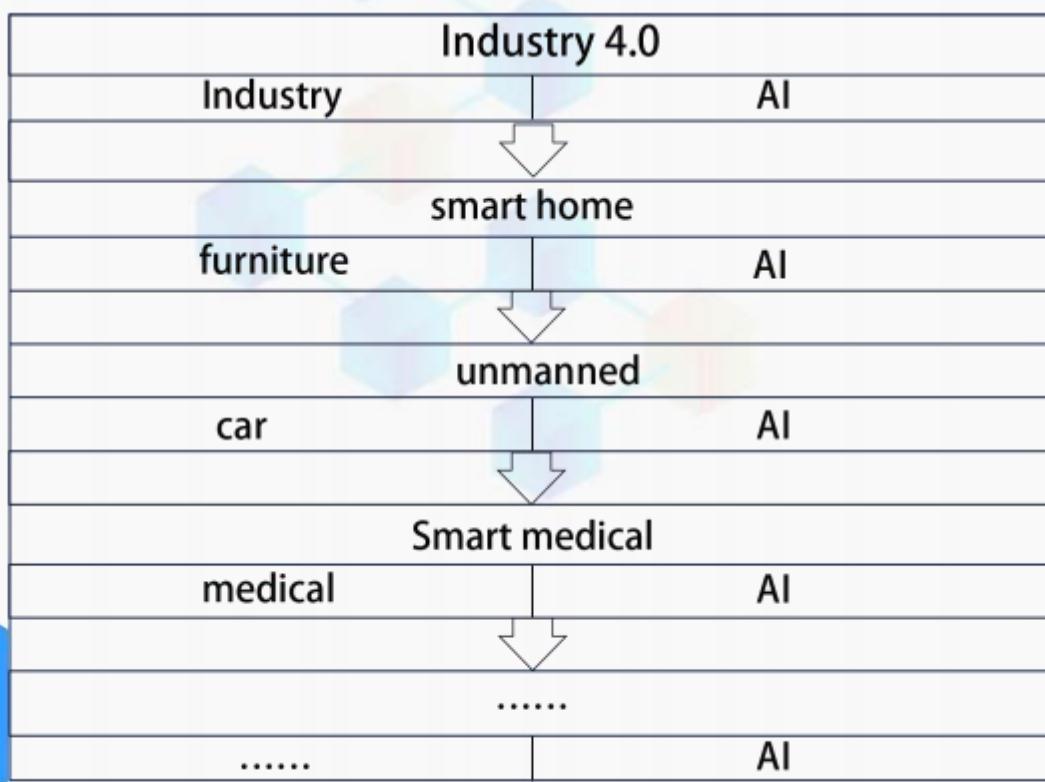
chapter2:Backgroundanalysis

2.1 Industry background

DeepSeeks artificial intelligence came out of nowhere, catching Silicon Valley tech giants off guard.

On the evening of January 20, 2025, DeepSeek released the official version of its reasoning model DeepSeek-R1, which directly trained a performance that was no worse than the OpenAI reasoning model O1 with low training cost, and was completely free and open source, which triggered an earthquake in the industry.

This is the first time that domestically produced AI has caused a stir in the tech community on a global scale, especially in the United States. Developers have expressed their intention to "rebuild everything" using DeepSeek. In this wave, after a week of fermentation, even a mobile app that was just released a month ago, DeepSeek, quickly topped the free App charts in the U.S. Apple App Store, surpassing not only ChatGPT but also other popular apps in the U.S. market.


DeepSeeks success even directly affected the U.S. stock market, and the fact that a model could be trained without using huge amounts of expensive GPUs made people rethink the training path of AI, directly causing Nvidias first AI stock to fall by 17%.

The development of AI technology has benefited from the accumulation of big data, improvements in computing power, and continuous algorithm optimization. As

CRYPTOMIND AI

global technological competition intensifies, governments and enterprises around the world are increasing their investment in AI technology, promoting its widespread application in healthcare, finance, education, transportation, and other fields. AI has become a significant force driving economic and social development and is also a key area for future technological competition.

In the past decade, artificial intelligence (AI) has developed rapidly, gradually permeating every aspect of human life. Autonomous driving will usher in a new era of mobility economy; AlphaGO has already defeated the world's top chess players; IBM's Watson is analyzing vast amounts of medical images at an unimaginable speed; Amazon is using AI to optimize and manage its extensive logistics system. We are in the midst of an AI explosion. How humans will harness AI to ensure it serves us safely and efficiently for each one of us has become one of the major challenges we must address today.

Figure 2-1 Development of artificial intelligence

2.2 Concept Introduction

1) artificial intelligence (AI)

In movies and science fiction, we often imagine artificial intelligence as malevolent machines intent on replacing humans; however, in reality, most of the thorny issues in our daily lives can be solved through "AI." From SIRI to self-driving cars, artificial intelligence (AI) is rapidly advancing. While science fiction frequently portrays AI as humanoid robots, it encompasses any technology from Googles (Google) search algorithms and IBM Watson (an AI program) to autonomous weapons. AI represents a bold attempt by humans to surpass themselves after achieving high levels of intellectual development. Even Stephen Hawking predicted that within the next 50 years, AI will become ubiquitous globally, leading to widespread unemployment.

2) Artificial intelligence, neural networks

Neural networks are algorithms designed to mimic the structure of the human brain, used for pattern recognition. Neural networks interpret sensor data through machine perception systems, marking or clustering raw inputs. The patterns that neural networks can identify are numerical forms contained in vectors, so all real-world data, including images, sounds, texts, and time series, must be converted into numerical form. Neural networks assist us in clustering and classification. They can be understood as a layer of clustering and classification built upon the data you store and manage. For untagged data, neural networks can group data based on the similarities of input samples; if trained with labeled datasets, neural networks can systematically classify data. (More precisely, neural networks extract features and then feed them into other algorithms for clustering and classification; thus, deep neural networks can be seen as part of a larger machine learning application system, which also includes algorithms for reinforcement learning, classification, and regression.

For example, ChatGPT, which has performed well in recent years, is a representative application of deep learning. GPT in ChatGPT stands for Generative, Pre-training and Transformer respectively.

Generative indicates that ChatGPT uses the Generative model, which is a generative model. ChatGPT employs a generative model to generate text that does not exist in the original text. Generative models are a branch of statistical models and are mathematical methods used to simulate real-world scenarios. Neural networks can be trained on actual datasets or on datasets generated by AI from scratch. The AlphaGo that defeated Lee Sedol was trained based on real game records of human players, while the new generation of AlphaGo that beat Ke Jie created its own game records through self-play.

The game between ChatGPT and humans is not the video game we have traditionally understood. The level of video games never improves, whereas ChatGPT possesses the most critical "deep learning" function of artificial intelligence. In ChatGPT, there are two deep neural networks: Value Networks (Value Network) and Policy Networks (Policy Network). Value Networks evaluate the position on the board, while Policy Networks select the move to make. These neural network models are trained using a new method that combines game records learned from human expert matches with reinforcement learning through self-play (playing against itself). This means that the existence of artificial intelligence allows ChatGPT's performance to continuously improve during its learning process, ultimately surpassing the current limits of human capability.

3) The development of artificial intelligence

In the 1980s, the concept of artificial intelligence was already hyped up, but technological limitations in both software and hardware held it back for a long time. Now, the development of four major catalysts—large-scale parallel computing, big data, deep learning algorithms, and brain-inspired chips—along with a reduction in computing costs, has propelled AI technology forward at an unprecedented pace.

(1) Internet of Things

The Internet of Things provides interfaces and means for computers to perceive and control the physical world. They are responsible for data collection, memory, analysis, transmission, interaction, and control. Cameras and lenses record vast amounts of images and videos about the world, microphones capture sounds and voices, and various sensors digitize the world they perceive. These sensors, much like human senses, serve as data inputs for intelligent systems, enabling them to perceive the world. The emergence of numerous smart devices has further accelerated the

development of sensor technology. These extensions into various real-world domains form the foundation of machine perception, which is one of the prerequisites for achieving intelligence.

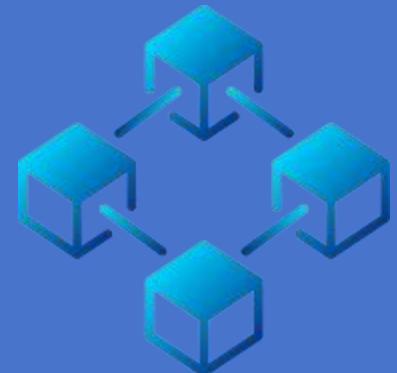
(2) Large-scale parallel computing

The human brain contains hundreds to trillions of neurons, each connected to thousands of other neurons through tens of thousands of synapses, forming an extremely complex and vast neural network that transmits signals in a distributed and concurrent manner. This ultra-large-scale parallel computing structure makes the human brain far superior to computers, making it the world's most powerful information processing system. In recent years, large-scale parallel computing based on GPUs (Graphics Processing Units) has emerged as a significant force, boasting far greater parallel computing capabilities than CPUs. From the perspective of how processors work, CPUs use a serial architecture based on the x86 instruction set, designed to complete computational tasks as quickly as possible. In contrast, GPUs were originally developed to handle millions of pixels in 3D images, equipped with more cores to process more computational tasks. Therefore, GPUs naturally possess the ability to execute large-scale parallel computations. The emergence of cloud computing and the widespread application of GPUs have made centralized data processing capabilities unprecedentedly powerful.

(3) Big data

According to statistics, the total amount of data generated globally in 2024 reached more than 20 times that of a decade ago, and the massive amount of data provides a very good foundation for the learning and development of artificial intelligence. Machine learning is the foundation of artificial intelligence, and data and past experience are the textbooks for AI learning, which optimize the processing performance of computers.

(4) Deep learning algorithm


Deep learning algorithms, also known as deep neural networks, are the most critical condition for the advancement of artificial intelligence and represent the most advanced and widely applied core technology in current AI. In 2006, Professor Geoffrey Hinton published a paper titled "A fast learning algorithm for deep belief nets," which introduced efficient algorithms for layer-by-layer training of deep neural networks. This made it possible to train neural network models under the computational conditions of that time. At the same time, the excellent experimental

results obtained through deep neural network models began to draw renewed attention to artificial intelligence.

After that, deep neural network model became an important frontier in the field of artificial intelligence. Deep learning algorithm model also went through a rapid iteration cycle. DeepBeliefNetwork, SparseCoding, RecursiveNeuralNetwork, ConvolutionalNeuralNetwork and other new algorithm models were constantly proposed, among which convolutional neural network (ConvolutionalNeuralNetwork, CNN) became the hottest algorithm model in image recognition.

4) Blockchain

On October 31, 2008, an individual using the pseudonym Satoshi Nakamoto (Satoshi Nakamoto) proposed the design white paper for Bitcoin and publicly released the initial implementation code in 2009. The first Bitcoin was generated at 18:15:05 on January 3, 2009. Despite its controversies, from a technical perspective, Bitcoin remains a remarkable innovation in the history of digital currencies. Since its launch in 2009, the Bitcoin network has been operating globally 7*24 hours for nearly 8 years, supporting transactions as high as \$150 million.

The Bitcoin network is made up of thousands of core nodes, with no central operation and maintenance involved, supporting

5) Professional terms related to mining mechanisms

1 Miners: Individuals and organizations that use their own mining equipment to trade and receive mining rewards and transaction fees.

2 Cloud mining service: having a large number of computing resources, renting computing power to customers.

3 Mine pool: This group of participants combines their computing sources with multiple miners to increase computing power, and mining rewards are distributed to all participants according to the proportion of computing power resources contributed.

4 Mining hardware manufacturing: organize the design and construction of special mining equipment.

5 Remote hosting service: Hosting and maintaining mining equipment owned by customers. The main difference between cloud mining services and remote hosting is the ownership of mining equipment.

Chapter 3: CryptoMind AI Introduction

3.1 What is CryptoMind AI

CryptoMind AI is a fourth-generation artificial intelligence and CryptoMind AI blockchain application platform, representing the future development of the most advanced technological fields today. Developed by Nordtone in collaboration with MITs computer research group and members of Ethereums initial team, CryptoMind AI is an AI-based CryptoMind AI blockchain circulating in global online application markets. The goal of CryptoMind AI is to harness the idle computing power and storage space of the general public to create a valuable AI network for everyone. In this network, anyone can use their own CM AI to mobilize resources across the entire network for large-scale computations, achieving results that ordinary people cannot reach; or contribute computing power and storage space to earn CM AI for use when needed.

3.2 Matrix operation principle

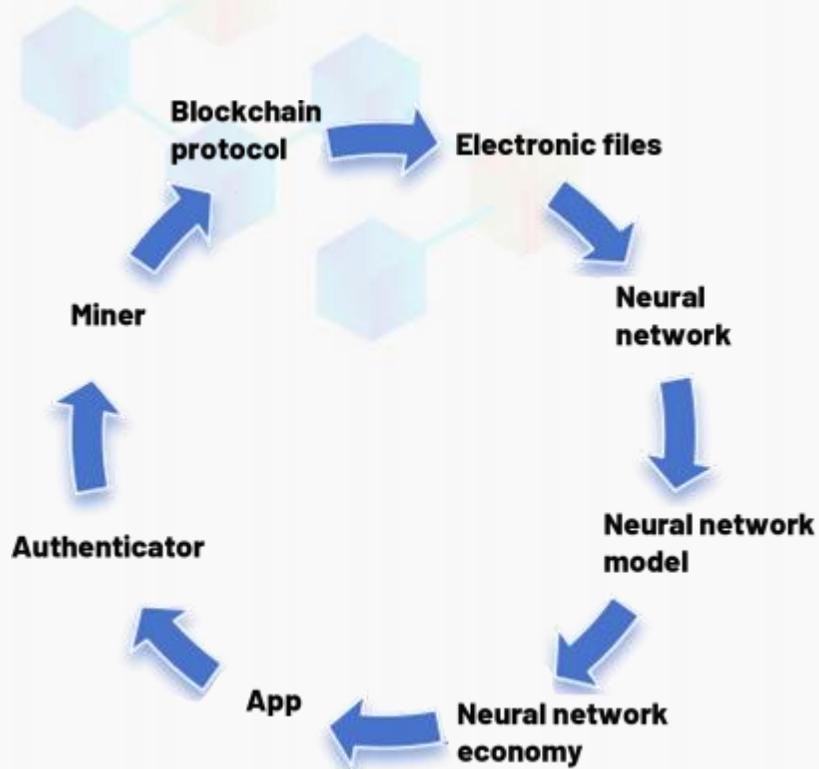


Figure 3-1 CryptoMind AI Terminology

1) Electronic Records (CryptoMind AI)

Any form of personal identification information that can be used to create and improve personalized artificial intelligence (CryptoMind AI). For example: biometric identification, voice identification, facial identification, personality and personal opinions, etc.

2) Neural network (CryptoMind AI)

CryptoMind AI introduces neural networks, personalized neural network (CryptoMind AI) is a three-dimensional simulated virtual avatar that resembles the owner in appearance, voice, and even thought processes. Each CryptoMind AI must be verified and linked with its owners identity, and the CryptoMind AI can act on behalf of the owner. With the owners authorization, the CryptoMind AI can continuously learn based on new data from the owner, constantly improving. For example, if the user only speaks English, their CryptoMind AI can learn to speak Chinese through skill acquisition.

3) Neural network model (ANN)

The neural network model (ANN) is a decentralized platform for applications that can access neural elements.

4) Neural network economy

The neural network economy is a trusted, AI-driven economy based on CryptoMind AI networks. Neural elements can be used for interaction, transactions and services to create a new economic model.

5) Application (DAPP)

CryptoMind AI Platform-developed decentralized applications (DAPPs) cover all aspects of the personal digital economy system, such as social, gaming, entertainment, and health products and services. They are developed around artificial intelligence and neural networks to provide a variety of user experiences and core functions, and provide an application layer points system for consumers.

6) Certifier (Authenticator)

A certifier is anyone who contributes their time and computing power to verify changes and transactions on the CryptoMind AI network. Example: Anyone who spends human effort to verify and confirm changes that occur on the CryptoMind AI

network.

7) Miners (Miner)

Anyone who contributes computing power on the blockchain can be paid CM AI tokens. Miners can also be verifiers.

8) CryptoMind AI Blockchain protocol

CryptoMind AI The blockchain protocol is a new public blockchain that ensures the authenticity and reliability of the CryptoMind AI platform. The CryptoMind AI blockchain protocol is a peer-to-peer network for storing immutable information blocks. This protocol has three functional layers: authentication, smart network, and data storage. In the application scenarios of CryptoMind AI, transactions, points, verifications, and more are all recorded on the blockchain and cannot be tampered with.

3.3 Characteristics of CryptoMind AI

CryptoMind AI Global Distributed Artificial Intelligence Blockchain Application Platform, with the token name CM AI, aims to lead the global AI industry blockchain and develop a new mining mechanism community client. On the CryptoMind AI platform, users can obtain CM AI tokens through mining. If the CM AI tokens reach a certain level, users can own their own independent mining machines and monitor their operation 24/7. The obtained CM AI tokens can be used to purchase various products and services on the platform.

CRYPTOMIND AI

As an AI community economic system, CryptoMind AI is dedicated to creating shared AI value in a simple and convenient manner, realizing the powerful application of blockchain technology, forming a vast ecological application platform, and then incentivizing users to join the platform through mining models. CryptoMind AI builds its application ecosystem based on the characteristics of blockchain decentralization, smart contracts, open-source code, and transparent rules, establishing a new era of AI blockchain applications that are mutually beneficial, trust-based, and transparent.

(1) Physical mine: CryptoMind AI owns a physical mine, the mine has a camera, each user with an independent mining machine can watch the live video of their mining machine running 24 hours a day, they can specify their own mining machines customized scheme, and computing power users can also see the real-time operation status of their own computing power area.

(2) DAPP: CryptoMind AI Develop an independent DAPP application platform for Android and IOS. The daily computing power and efficiency are updated in real time within the DAPP, which is open, transparent and clear at a glance.

(3) Flexible exit mechanism: the purchased computing power of the pledged mine can be redeemed directly in the form of mining machines.

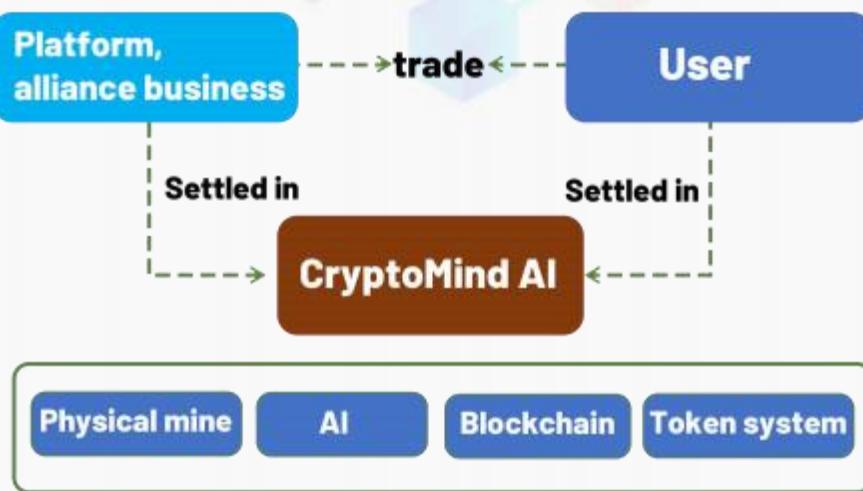


Figure 3-2 CryptoMind AI computing power mode

Chapter 4: Innovation/ Application

4.1 Project innovation characteristics

4.1.1 Authoritative notarization mechanism

The CryptoMind AI platform employs an authoritative notarization mechanism to provide a superior user experience for all stakeholders. Alliance enterprises on the CryptoMind AI platform submit relevant information to authorized notary institutions for verification. Only after this verification can product information and data be recorded on the blockchain. Due to the immutability and privacy of blockchain, these verified pieces of information form a vast network, ensuring the fair, just, and effective operation of the platform. Furthermore, the CryptoMind AI platform will also notarize with other stakeholders to ensure the authenticity of the information they submit, creating a secure, orderly, and fair platform environment, thereby ensuring the platforms fair and effective operation.

4.1.2 Smart contract interaction

As early as 1995, cryptographer Nick Szabo pointed out that "an intelligent contract is a set of promises defined in digital form, including agreements on which parties can enforce these promises." To this day, an intelligent contract can be simply described as: it is a computer program running on a replicable and shareable ledger, capable of processing information, receiving, storing, and sending value. It functions more like a system participant, akin to an absolutely trustworthy person who manages your assets temporarily and strictly follows the rules agreed upon in advance.

Stakeholders on the CryptoMind AI platform reach an agreement on service provision and establish a smart contract with the proposed terms. This smart contract spreads to every node via the P2P network and is stored on the blockchain. Once all parties involved in the contract provide their services, the smart contract processes the request and executes according to the pre-set conditions and the wishes of the participants. Since the entire process is recorded on the blockchain, it ensures the fairness and transparency of the transaction.

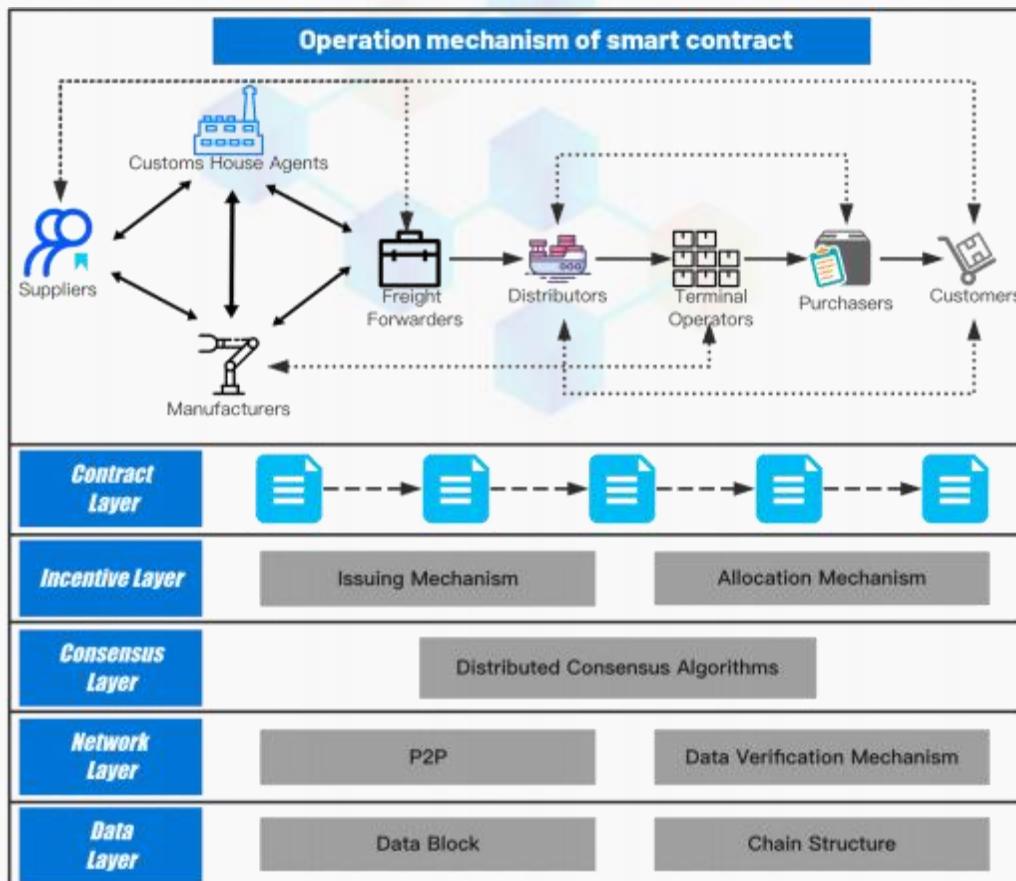


Figure 4-1 Operation mechanism of smart contract

4.1.3 User personal privacy is more secure

The CryptoMind AI chain features a unique privacy-protecting cryptographic contract. Through secure multi-party computation, it ensures that the original data is completely isolated from access, enabling rapid and secure data sharing services. Data is stored on decentralized resources using blockchain encryption, identity verification, and authorization mechanisms. Apart from the user themselves, no institution or individual can access the users original data. Data can only be partially opened with the users consent. Under differential privacy encryption in cryptography, applications can conduct big data research on part of the users data but cannot parse personal data, let alone view, copy, or alter it.

4.1.4 High efficiency of operation

The self-built CryptoMind AI ecosystem avoids the threats of low performance and uncontrollable system security. CryptoMind AI adopts a three-tier data architecture consisting of protocol layer, extension layer, and application layer, addressing various obstacles that may arise during the implementation of blockchain technology. It is designed to meet various requirements for commercial applications, including: establishing a practical regulatory audit mechanism; protecting transaction privacy; ensuring stability, efficiency, and reliability.

4.1.5 Unique technical advantages to build a unique business blue ocean

CryptoMind AI The chain supports cross-chain communication protocol and has a large number of common functions and commonly used contract templates built in, which can meet the expansion of various business scenarios in the future. At the same time, in order to ensure technical protection, this project sets up technological innovation barriers and is establishing a proprietary business blue ocean.

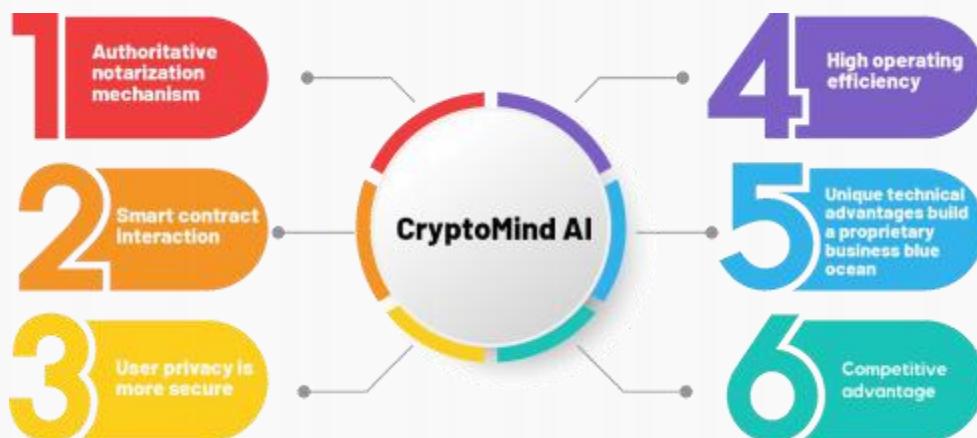


Figure 4-2 Innovation characteristics of CryptoMind AI project

CRYPTOMIND AI

Unlike traditional blockchain protocols, the CryptoMind AI blockchain protocol features an AI learning module within its artificial intelligence network. Distributed AI algorithms are woven into the blockchain architecture, forming the core module of the CryptoMind AI blockchain. Blockchain encourages more people to share data and resources that were previously not shared, making large-scale data and resources even greater than the internet. Therefore, machine learning and artificial intelligence are required for data analysis and resource management. The CryptoMind AI blockchain protocol is specifically designed for AI, providing a blockchain platform for its deployment. More data, resources, and computing power can be shared without worrying about privacy issues, security concerns, or being stolen by competitors. Usage and records are distributed across vast, decentralized computer networks. AI technology offers learning capabilities to users and developers, allowing users to continuously improve and developers to use AI algorithms and computing power to provide better services. Everyone's participation accelerates the advancement and strengthens the AI system.

4.2 Application scenarios

CryptoMind AI Will work with developers and organizations around the world to launch user experiences based on artificial intelligence and neural networks, allowing consumers to use the platforms diverse capabilities.

Here are a few different industry cases that illustrate the core features of applications built on the CryptoMind AI platform that are also part of people's daily lives.

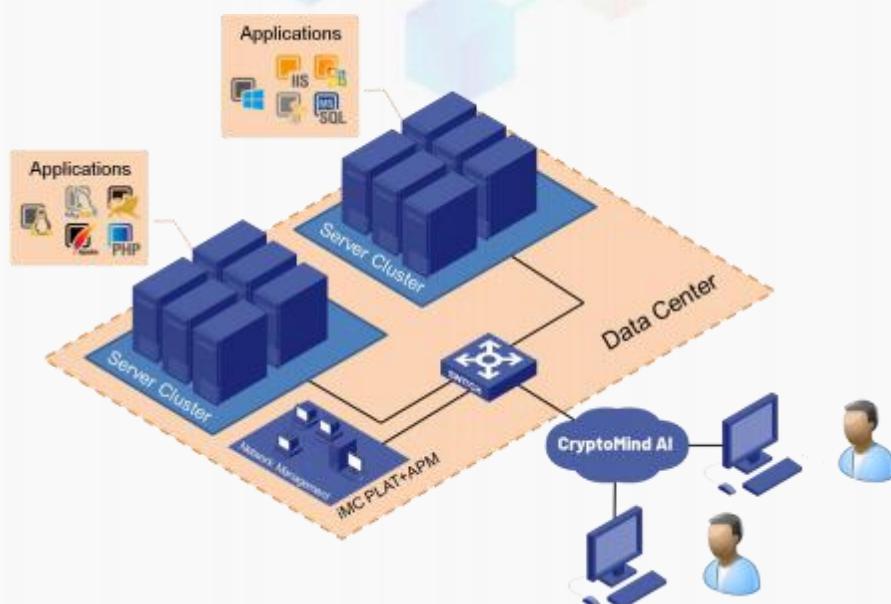


Figure 4-3 Application scenario distribution diagram

4.3 Implementation of intelligent protocol

4.3.1 Reputation

Based on the information and profiles left on the platform, CryptoMind AI automatically creates a personal credit score (CryptoMind AIs trust score) for users, which can bring multiple benefits to decentralized applications on the platform.

4.3.2 Authentication

CryptoMind AI is a real digital world. Blockchain provides identity binding verification for every user in the CryptoMind AI ecosystem, ensuring that every action and interaction of individuals within CryptoMind AI is recorded on the blockchain. Through data validation, miners can prevent false profiles and data on the CryptoMind AI platform. Even if users authorize developers to use their information for deployment in other applications, they can still track their activities to ensure their information is not misused. Moreover, both developers and users receive compensation in a transparent manner. These actions are all recorded on the blockchain.

4.4 Core principles of CryptoMind AI

We developed and used the CryptoMind AI platform based on the following four principles:

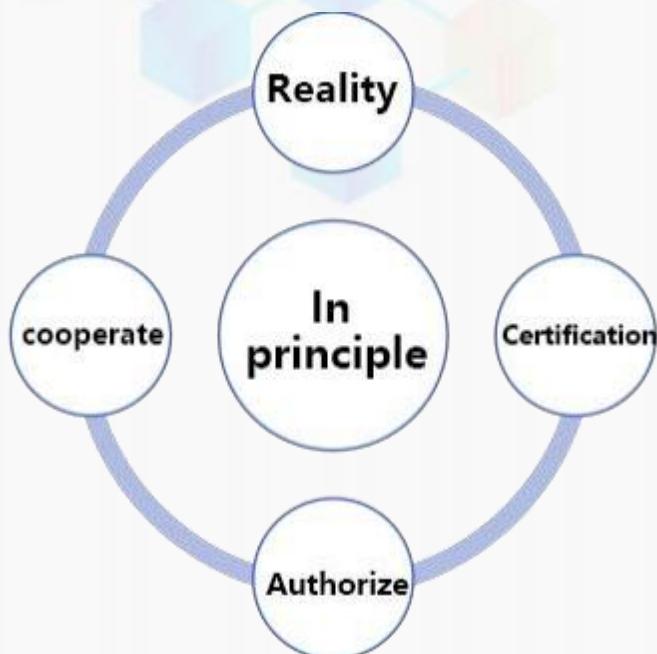


Figure 4-5 Four core principles of CryptoMind AI

1) Verifiability and authenticity

CryptoMind AI Believes that the value of a real and credible digital world is the highest, and that verifiability and authenticity are mainly reflected in the more data users contribute to the platform, the higher the accuracy and authenticity of the neural network provided.

2) Certification

Blockchain protocols can authenticate platforms and enterprises, ensuring the uniqueness and authenticity of their information. They also verify the authenticity of data generated or submitted by users or developers. Anyone who helps with authentication on the blockchain can receive CM AI coins as compensation. CryptoMind AI is a mutual, self-service network system.

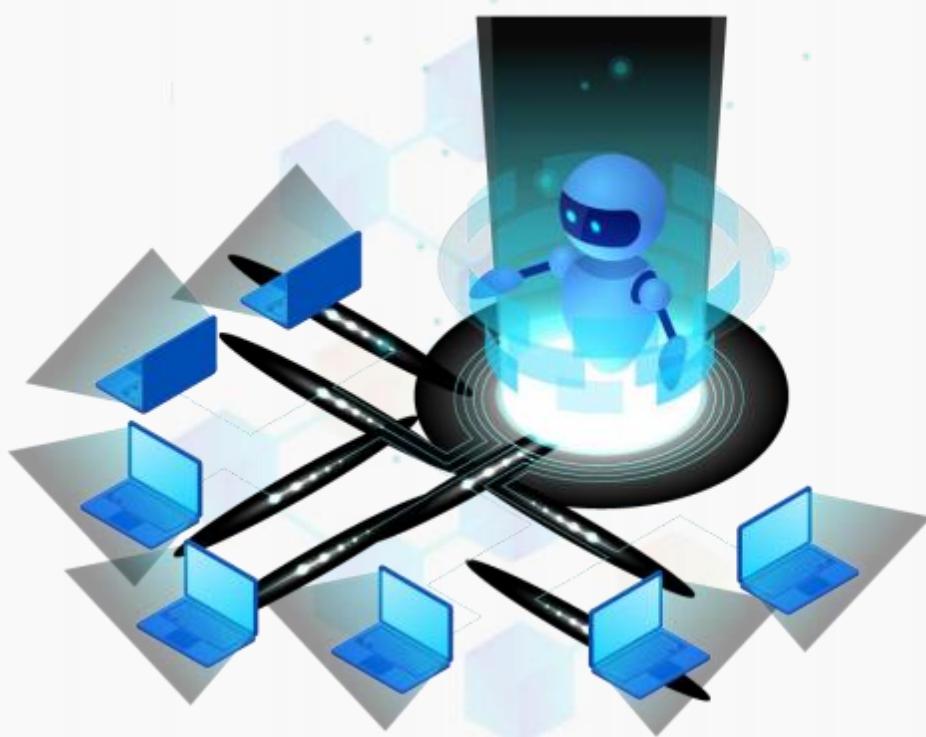
3) Authorization

CryptoMind AI provides a tool for platform users to exercise their personal right of publicity, so that everyone has ownership of their image and representation.

4) Cooperation

Anyone can simply create their neural network and start using it, engaging in various applications of neural networks and communities where interaction and work can be rewarded, thereby promoting the development of artificial intelligence technology. A large number of individuals providing data can create a vast information pool, and such an information pool with a wealth of personalized data can be used for deep learning.

4.5 Computing power investment management products


Computing power can be said to be the brain of the entire CryptoMind AI, and also the most distinctive part of the entire CryptoMind AI. The computing power of CryptoMind AI will bring vitality to CryptoMind AI, so that CryptoMind AI can constantly evolve with the times.

We do not intend to create a concept of computational mining that has only the shell but no soul. Therefore, from the very beginning, we will endow this platform with a soul. In the early stages, CryptoMind AI will deploy a certain number of Bayesian AI computing machines into the network, enabling it to have self-learning and evolutionary capabilities right from the start. After completing the initial

CRYPTOMIND AI

self-learning phase and laying the foundation for artificial intelligence across the entire network, we will open up access to computing power. At that time, every community participant who wishes to benefit from sharing computing power can connect their resources to this network. After being optimized by our AI algorithms, they will begin contributing to this new world.

Chapter 5: CryptoMind AI Economy

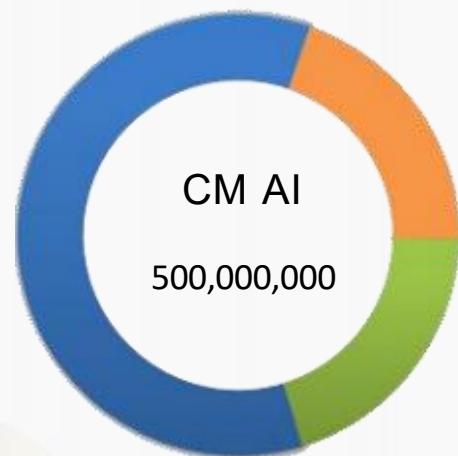
CM AI Overview of tokens

DM AI tokens (hereinafter referred to as "CM AI") are the native tokens of the CryptoMind AI platform, used to incentivize various activities within the platform ecosystem, including but not limited to investment decisions, mining rewards, community governance, and smart contract execution. CM AI tokens serve as the value carrier of the platform, ensuring that users can participate in all activities on the platform and benefit from its growth and development.

Token name: CM AI

Total issuance: 500,000,000

IDO: 20%


Technology: 15%

Operations: 35%

Foundation: 15%

Environment mining: 15%, PoS, mined in a way

Issue price: \$1.77

1) Block speed

One every 30 seconds

2) Neural networks and deep learning

The deep learning framework in CryptoMind AI adopts ChatGPT, which is a **distributed deep learning framework** based on the Transformer architecture, focusing on industry applications and supported by providers. It can solve various problems involving large amounts of data within a reasonable time frame. DL4J integrates with Kafka, Hadoop, and Spark and can run using any number of GPUs or CPUs.

The reasons for our choice of DL4J are as follows:

First, most large enterprises and government agencies heavily rely on Java or JVM-based systems. They have made substantial investments, and AI based on the JVM can help them fully realize the value of these investments. In the business world, Java remains the most widely used language. Java is the language of Hadoop, ElasticSearch, Hive, Lucene, and Pig, all of which are useful tools for solving machine learning problems. Spark and Kafka are written in another JVM language, Scala. This means that deep learning could help many programmers who need to solve real-world problems, but they are hindered by language barriers. We aim to enhance the accessibility of deep learning for this broad audience, enabling these new users to apply deep learning directly. Java is the most widely used programming language in the world, with 10 million developers using Java.

Secondly, compared to Python, Java and Scala have inherent speed advantages. Without considering the use of Cython acceleration for dependencies, any code written in Python is fundamentally slower. It cannot be denied that the most computationally intensive operations are typically performed using C or C++. (The operations mentioned here also include characters and other tasks involved in advanced machine learning processes.) Most deep learning projects initially written in Python must be rewritten when deployed for production. Deeplearning4j relies on JavaCPP to call pre-compiled native C++ code from Java, significantly boosting training speed. Many Python programmers opt to implement deep learning in Scala because they prefer static typing and functional programming when collaborating on sharing basic code.

Thirdly, to solve the problem of Java's lack of powerful scientific computing libraries, we wrote ND4J. ND4J runs on distributed CPU or GPU and can be connected through Java or Scala API.

Finally, Java is a secure network language with cross-platform characteristics, capable of running on Linux servers, Windows and OSX desktops, Android phones, as well as embedded Java in low-memory IoT sensors. Torch and Pylearn2 are optimized through C++, making optimization and maintenance challenging, whereas Java is a "write once, run anywhere" language, suitable for enterprises that need to use deep learning systems across multiple platforms.

3) Smart contracts

CryptoMind AI Allows users to execute RootStock smart contracts. RootStock is a decentralized, Turing-complete smart contract platform.

4) Visualize self-feedback contracts

CryptoMind AI Provides a visual self-feedback contract editing function on the

CRYPTOMIND AI

web, providing an effective simplified self-feedback contract model.

5) Weak AI

CryptoMind AI provides weak AI services. The weak AI view holds that it is impossible to build intelligent machines that can really reason and solve problems. These machines do not seem to be intelligent, but they do not really have intelligence, nor do they have autonomous consciousness.

6) Financial data forecasting

The effective application of CryptoMind AI will mainly focus on the prediction of financial data (such as stock market, bond market, precious metals, foreign exchange, etc.), through big data and deep self-learning, to realize the comprehensive summary analysis of economic data and the results of prediction.

7) CryptoMind AI Rent

CryptoMind AI Allows users to rent CryptoMind AI resources.

8) Automatic customer service system

By renting CryptoMind AI DApp, we can reduce the workload of a large number of human customer service.

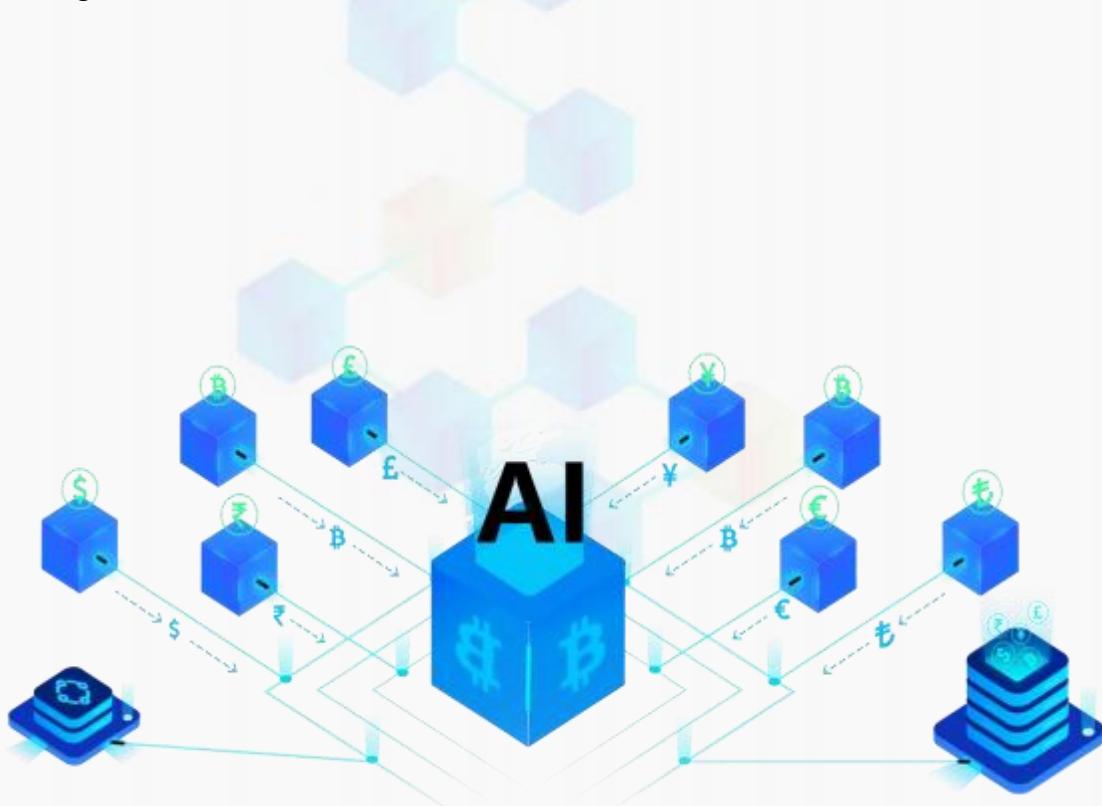
9) Social assistance

Through the CryptoMind AI network, we can quickly find good friends who share our interests and expand our social circle.

Conclusion: CryptoMind AI is a blockchain network focusing on the front edge of artificial intelligence science. It can make use of the surplus resources and time of the public to provide paid AI services for users in need, so as to promote social progress and technological improvement.

Chapter 6: Business Model

6. 1 Development, management and security protection of CryptoMind AI


As artificial intelligence becomes more personalized and private, it also serves as a valuable carrier of sensitive personal data. To ensure privacy and security, the best solution is to decentralize AI, securely bind it with blockchain protocols for trust verification, and grant secure and managed authorization. This allows everyone to manage their own data and AI.

Artificial intelligence requires a vast amount of data. Blockchain returns control of data to users themselves, allowing each contributor to benefit. Blockchain will attract a large number of individuals and institutions to contribute resources such as data, storage, and computing power on the principles of security, equality, and trust—resources that were previously impossible to share. These resources bring new opportunities while also requiring matching technologies and algorithms for management and data analysis. Unlike platform-based AI, the CryptoMind AI platform itself is a peer-to-peer distributed AI system. CryptoMind AI's personal AI technology is built on the deep learning framework of the parent system and the transfer learning framework of the personal system. The deep learning outcomes of the parent system, composed of large amounts of personal data, can be transferred to each individual's small system application. CryptoMind AI provides a distributed AI technology that encourages users to share securely while managing their privacy and permissions themselves. Users and developers can analyze blockchain data using AI technology, leverage resources on the blockchain to serve themselves and society, and profit from it. With the participation of a broad consumer base, human society will gradually form collective rules and systems for managing AI.

6.2 CryptoMind AI Distributed artificial intelligence technology

Everyone is a node (point) on the CryptoMind AI blockchain. On this big data system formed by the sharing of personal data from each node, statistical models generate larger volumes of new simulated data for deep learning training. The results of deep learning can be applied to the subsystems of personal data from each node through transfer learning. Through the CryptoMind AI blockchain and smart contracts, data from different aspects of individuals, people from different regions or cultures, and personal data across various applications have never been linked before. The CryptoMind AI blockchain makes it possible for such human-centric AI learning. Since the blockchain is decentralized, everyone has the right to decide what kind of AI they want and how to use their AI as a contributor and owner of the data. CryptoMind AI is the provider of personalized AI technology, with each individual being both the owner and the decision-maker of their own AI.

CRYPTOMIND AI

Chapter 7: Application of blockchain technology

7.1 Overall system logic

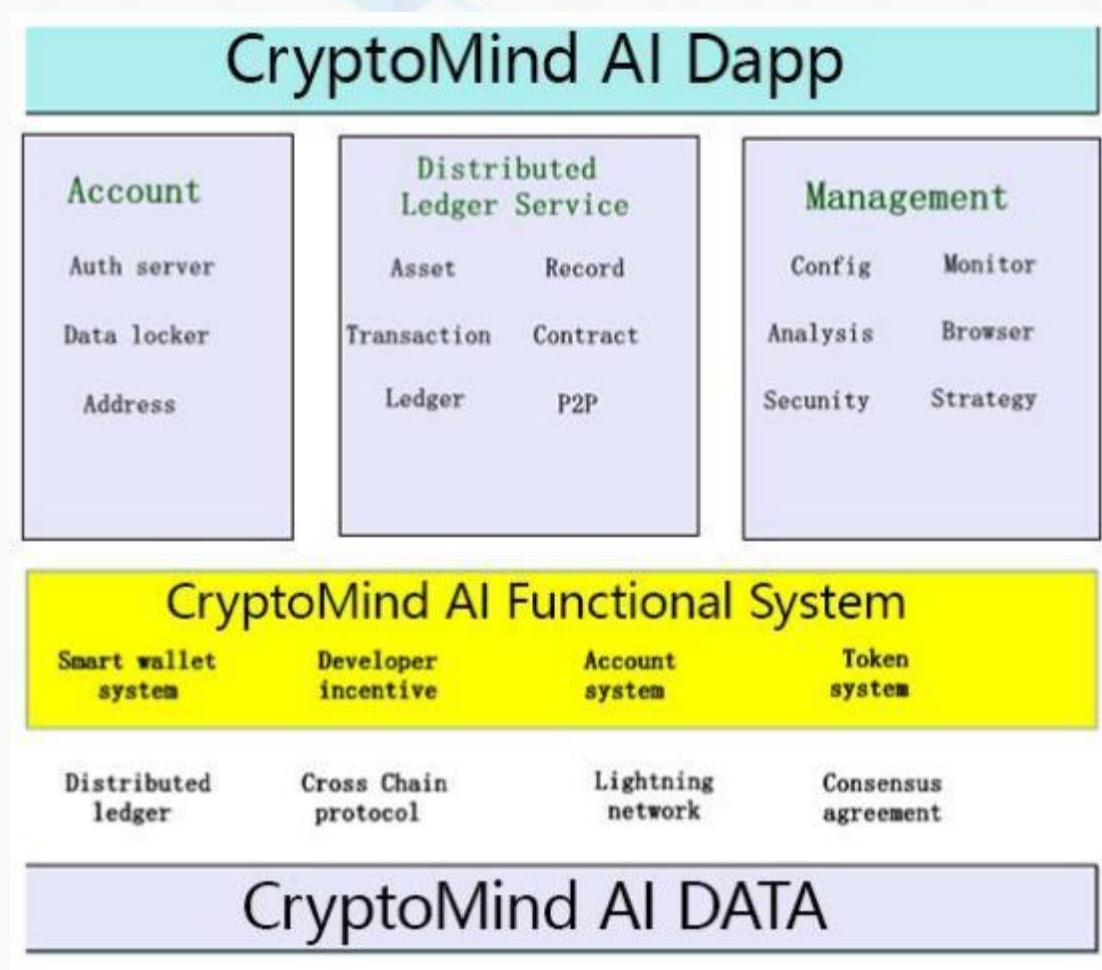


Figure 7-1 CryptoMind AI System architecture

7.2 Develop the service layer

7.2.1 Smart contract life cycle management

- A) Allow developers to design and create smart contracts containing business logic, and business service systems to interact with the blockchain system through interaction mechanisms such as interfaces.
- b) Provide lifecycle management functions of smart contracts, such as creation, invocation, upgrade and destruction.
- c) Provide the ability to upgrade and migrate data to smart contracts, but in accordance with the upgrade rules set by the original smart contracts.

7.2.2 Smart contract portfolio services

- A) Create new service functions by combining one or more existing smart contracts.
- b) Design integrated interfaces for service users to access multiple blockchain system services.

7.2.3 Smart contract testing service

- A) Test the component functions implemented in the blockchain system to ensure that these components are complete and correctly implement the service functions.
 - b) Test the component functions implemented in the blockchain system to detect the system security and robustness of these components.
 - c) Ensure interoperability of service function interfaces.
- B) The test should cover the service deployment nodes in the blockchain system.

7.2.4 Smart contract template service

- A) The CryptoMind AI system supports on-chain business using the current mainstream virtual machine mechanism. It currently supports the EVM virtual machine compatible with Ethereum, enabling direct deployment and execution of solidity smart contracts. The team is also actively developing other virtual machine implementations that are closer to computational mining, to facilitate the rapid development and customization of on-chain business logic
- b) Predefined contract module: The CryptoMind AI blockchain system can be

used quickly. For some common business scenarios, the CryptoMind AI system has pre-developed several on-chain business contracts that can be directly used. Users can directly choose to deploy/use them according to their actual needs.

7.3 User service layer

7.3.1 Wallet

Users can create their own public and private key accounts through the wallet, and can perform operations such as token transaction smart contract calls through the wallet.

7.3.2 Account

For users interacting with the Ethereum blockchain through transactions, accounts are essential. An account represents the identity of an external agent (such as a character, mining node, or automated agent). Accounts use public key encryption to sign transactions, allowing the Ethereum Virtual Machine to securely verify the senders identity. Each account is defined by a pair of keys: a private key and a public key. Accounts are indexed by addresses, which are derived from the public key by taking the last 20 bytes. Each pair of private key/address is encoded in a key file. The key file is a JSON text file that can be opened and viewed using any text editor. The critical part of the key file, the account private key, is typically encrypted with the password you set when creating the account. The key file can be found under the keystore subdirectory of the Ethereum node data directory.

7.3.3 Storage

CryptoMind AI contains two aspects of off-chain storage modules. IPFS is used to store large files off-chain, while structured storage is used to store structured records and support structured query language.

IPFS Module: The CryptoMind AI platform introduces IPFS technology to support large file storage. Files are stored using hashes, which offer features such as tamper-proofing, permanent loss prevention, leak protection, and secure access. These features prevent data security impacts from accidents, ensuring that relevant information can be permanently preserved and guaranteeing the non-leakage and non-loss of data security and user privacy.

Structured storage module: Structured storage is used to store structured records and keep them synchronized with the records on the blockchain.

7.3.4 Privacy protection

The privacy module provides encryption contract related services and various privacy solutions.

Encryption Contract: For smart contracts with privacy requirements, an encryption contract solution is provided. In the encryption contract, information within the smart contract is encrypted, and transactions that call the contract are also encrypted. Private transactions use a partial consensus method, and the execution of a private transaction consists of two steps: the first step is preprocessing, converting a privacy transaction into a regular transaction $[S1 \Rightarrow S2]$ ($S1$ and $S2$ represent the ciphertext states of the smart contract before and after transaction execution); the second step is packaging $[S1 \Rightarrow S2]$ as a regular transaction into a block.

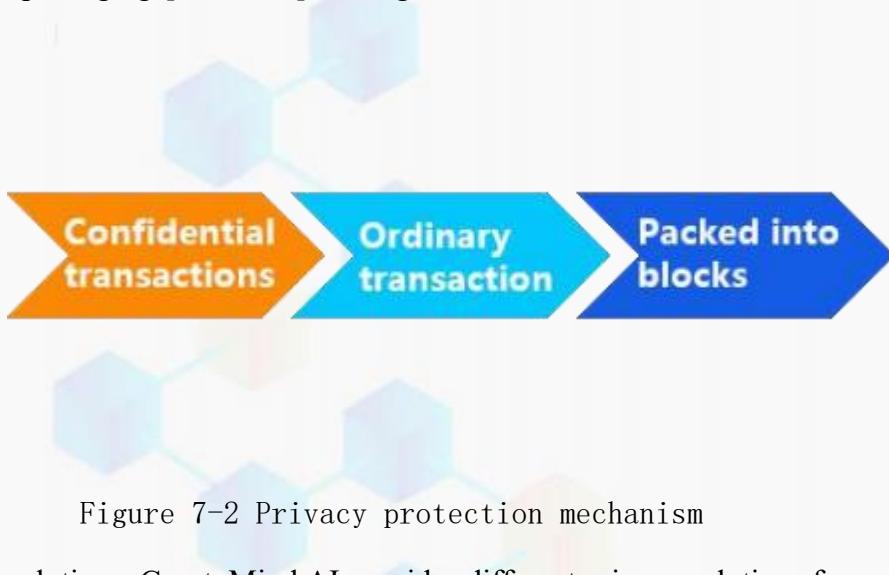


Figure 7-2 Privacy protection mechanism

Privacy solutions: CryptoMind AI provides different privacy solutions for different scenarios, such as multi-party computation and PGP communication. Through secure multi-party computation, CryptoMind AI can achieve complete isolation access of original privacy data. PGP security communication solution brings fast and secure data sharing service to CryptoMind AI.

7.4 Lower level services

7.4.1 Security mechanism

Select encryption mechanisms that meet international standards to encrypt data in the chain, and only users with corresponding permissions between the two parties and owners can view transaction data and trader information between users.

7.4.2 Consensus mechanism

The value anchor of blockchain lies in the chain's own consumption and output. When blockchain chooses PoS as its consensus mechanism, the computational power consumed for each block generation becomes the cornerstone of its value. Additionally, on CryptoMind AI, each node has the capability to solve real-world environmental issues and can provide various services externally. If every node on CryptoMind AI can participate in the settlement of shared work, the entire blockchain chain will have practical output value. Therefore, to ensure the maximization of blockchains inherent value, CryptoMind AI will default to a consensus mechanism based on PoS. The core principle of PoS is: the greater the computational power, the higher the probability of mining a block, and the greater the weight in maintaining blockchain security.

However, due to the obvious drawbacks of PoS, such as slower transaction speeds, its consensus mechanism will be designed to be modular in subsequent development on the platform. This allows for configuration through control chain parameters, enabling dynamic adaptation to different application scenarios of public and private chains. The CryptoMind AI platform will select appropriate consensus mechanisms based on the specific application scenarios of CryptoMind AI itself, ensuring that all distributed nodes achieve data consistency through algorithms.

7.4.3 Equity management

Each participant holding Tokens has the opportunity to become a validator node. To become a validator, one must stake their tokens in the shared capital pool. The voting weight of a validator is calculated based on the proportion of their staked tokens relative to the capital pool. When the total number of validators has not reached its limit, every token holder can apply to become a validator. However, once the number of validators reaches the limit, non-validators wishing to become validators must stake more tokens than the minimum required by the current lowest-weight validator. Non-validators with fewer tokens can delegate their tokens to a representative, who can then distribute the rewards they earn proportionally among these delegates. This way, participants with fewer tokens can also participate in consensus by finding a proxy, thereby reducing the annual inflation loss caused by token inflation.

7.4.4 Distributed control structure

CryptoMind AIs blockchain constructs a distributed structural system based on an open-source, decentralized protocol determined by the system. This allows value exchange information to be distributed and sent across the network. Information data content is recorded through distributed ledging, stamped with timestamps to generate block data, and then distributed to various nodes via distributed transmission, achieving distributed storage. Specifically, the distributed structure is reflected in three aspects:

1) Distributed accounting

The user behavior trajectory on the CryptoMind AI platform is recorded by multiple nodes, and its legitimacy is verified. The legitimate transactions are recorded in the ledger of all users, which can minimize the moral hazard and make it less likely to be wrong.

2) Distributed propagation

In the blockchain, the propagation of each new transaction is distributed. According to the P2P network layer protocol, the message is directly sent to all other nodes in the network by the delayed node.

3) Distributed storage

All the data in the database are stored in all the computer nodes of the system and updated in real time. The completely decentralized structure enables the data to be recorded in real time and updated in each network node that participates in data storage, which greatly improves the security of the database.

In summary, through the three major "distributions" of distributed ledger, distributed dissemination, and distributed storage, all data storage, mining processes, transaction verification, and information transmission within the system are decentralized. Using a distributed exchange to facilitate payments, buy orders and sell orders are cached on the blockchain. When consensus nodes record transactions, they automatically trigger buy and sell orders, distributing the transactions across the network. Once more than 51% of the nodes verify the transaction, it is completed. The benefit of distributed matching and payment transactions is that every transaction can be traced, and each transaction receives confirmation from the widest possible network of nodes, enhancing transaction record security while increasing the

difficulty for hackers to manipulate the trading floor.

7.4.5 Data block structure

Blockchain is a system where blocks are combined in a chain-like manner. Blockchain serves as a shared transaction database among all nodes within the system, which participate in the blockchain network based on value exchange protocols. The header of each block contains the compressed value of transactions from the previous block, thus forming a long chain from the Genesis Block (the first block) to the current block. Since it is impossible to generate the current block without knowing the HASH function value of the previous block, each block must follow the previous one in chronological order. This structure, where all blocks reference the previous block, forms a data chain from existing blocks. The "block + chain" data storage structure is shown in the following figure.

Figure 7-3, data block

7.5 CryptoMind AI Random number generation

CryptoMind AIs random number generation includes two ways: consensus-based random numbers; two-stage random numbers.

1) Consensus-based random numbers

The consensus-based random number takes the nonce of the current block as one of the seeds and together with the nonce of a future block to form the random number seed (Random Seed), and obtains the real random number through the random number generator.

2) Random numbers generated in the second stage

The second phase of random number generation divides the process into two stages, with the core aim of preventing miners from hiding the nonce of the current block as a seed for random numbers due to their own interests. Therefore, in the first stage, an online third party is randomly selected. This third party can be associated with the Hash of the current block and determine one of the nonces for future blocks as a seed for random numbers. Alternatively, this third party can directly choose a trusted third party. The third party generates a pair of public and private keys, publishes the public key of the block containing the random seed, and subsequently publishes the private key in the next block. The nonce of the block containing the private key, together with the random seed, forms the seed for the random number generator, from which random numbers based on network consensus are generated.

7.6 CryptoMind AI difficulty adjustment

The principle of difficulty adjustment in CryptoMind AI is "to allocate the reward of coins according to the difficulty ratio". This makes the mining of cryptocurrencies more similar to the real world mining, and ensures that miners with lower computing power can also get reasonable benefits.

Survival rules for low-level miners:

- 1 Mining, but its getting harder;
- ② Basic dividend, constant income;
- 3 Fixed mining machines, constant income;
- ④ Trading automatic mining, earnings randomization.

1) The mining difficulty formula of CryptoMind AI is as follows:

difficulty=maximumtarget / current target (target is a 256 bit number)

2) Storage method of difficulty in the block:

Each block stores a packed (pack) hexadecimal representation of the target. This target can be inferred using predefined formulas. For example, if the packed target in a block is 0x1b0404cb, then this hexadecimal target is:

$x0404cb*2^{**}(8*(0x1b-3))=0x00000000000404CB00000000000000000000000000000000$
00000000000000000000000000000000

CRYPTOMIND AI

Note that this 0x1b0404cb is a signed data. The maximum legal value is 0x7fffff, The smallest positive legal value is 0x008000.

The maximum (bit) possible difficulty is defined as 0x1d00ffff, which is expressed in hexadecimal as:

$$StakingRate : X = \frac{NMT_{TotalStaking}}{NMT_{TotalSupply}}$$

$$AnnualInflationRate : R = \frac{(NMT_{YearEndSupply} - NMT_{YearStartSupply})}{NMT_{YearStartSupply}}$$

ExpectedStakingRate : $x_{ideal} = 0.6$

ExpectedAnnualizedRateOfReturn : $i_{ideal} = 0.165$

InflationRateWhenStakingIs0 : I₀ = 0.025

Greater Than Expected Attenuation : $d = 0.04$

InflationRateCalculationFormula : I_{inpos}(x)

$$for \rightarrow 0 < x \leq x_{ideal} \quad I_0 + x(i_{ideal} - \frac{I_0}{i_{ideal}})$$

$$for \rightarrow x_{ideal} < x \leq 1 \quad I_0 + (i_{ideal} * x_{ideal} - I_0) * 2^{\frac{(x_{ideal}-x)}{d}}$$

$$YieldFormula : i(x) = \frac{I_{npos}(x)}{x}$$

3) The correlation between computing power and given difficulty in CryptoMind AI:

CryptoMind AI will adjust the mining difficulty in real-time based on the current computing power, resource consumption, and actual working conditions of the network; assuming every N blocks (the value of N is determined by the AI algorithm according to the current parameters), the difficulty will be adjusted, based on the

average time required to complete these N blocks. Before generating N blocks, the algorithm will have a budget for the average time it will take to generate these N blocks, with an estimated value of T0.

If the average time T of the first N blocks exceeds the estimated time T0, the difficulty will decrease. Otherwise, the difficulty will increase. The adjustment of the difficulty is positively correlated with the variance of the time spent by the first N blocks.

7.7 CryptoMind AI P2P protocol

On the CryptoMind AI, each node (client) uses the P2P protocol for message broadcasting and interaction. For the data blocks of the CryptoMind AI, the P2P protocol used is a standard cryptocurrency protocol, with its core feature being the introduction of the "Ghost" protocol. In contrast, the control block of the CryptoMind AI uses a standard P2P protocol and does not support the "Ghost" protocol.

The APP client of CryptoMind AI typically operates in a daemon state. In this state, the tasks performed by the APP client include: (1) invoking network daemons to maintain connections and periodically send messages; (2) obtaining current block information and associated block information; (3) acquiring entity mining parameters and analyzing these parameters according to the standard model to determine whether to submit updated parameters.

When the CryptoMind AI DAPP client receives a message, it will perform the following steps:

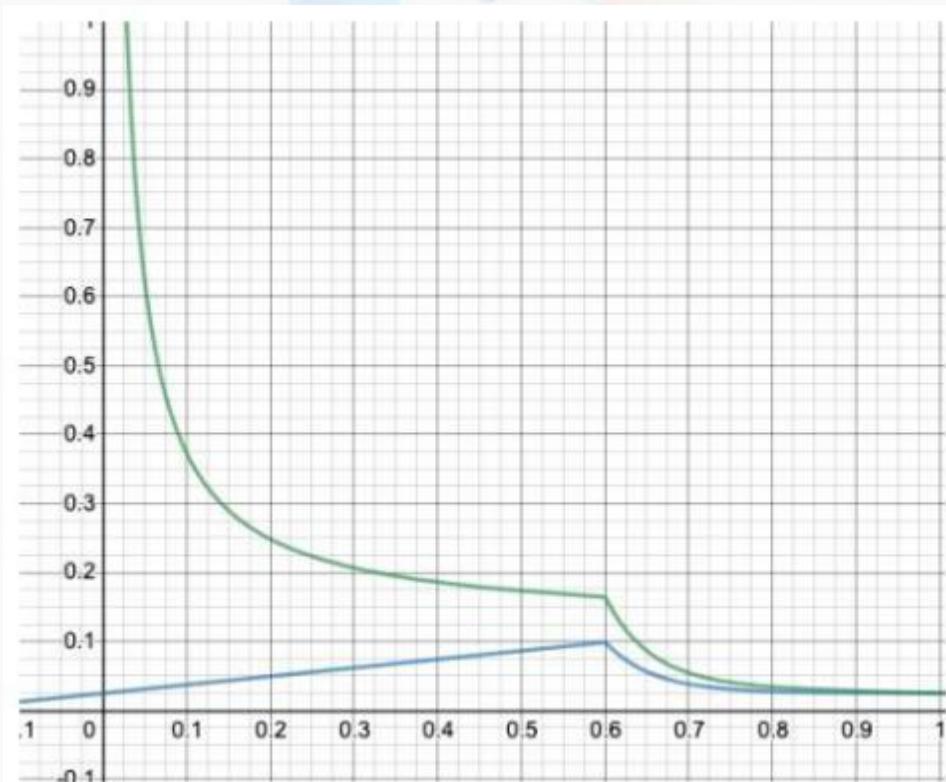
Step 1: Hash the message and confirm whether the data and its Hash value have been received. If so, exit; otherwise, send the data to the data analyzer.

Step 2: Confirm the data type of the message. If the message is an illegal contract, do not add it to the local transaction list; otherwise, go to step 3.

Step 3: Check if the "parent block" parameter in the block has been stored in the database. If not, exit.

Step 4: When the current block is a data block, check whether the proof of work in the block header and all block headers in its "parent block list" are legal. If any one is illegal, exit. When the current block is a control block, skip the step of checking the "parent block list" and proceed to check the block timestamp.

Step five: Check the block header of each block in the "uncle block list" to


determine if it is a parent block of its "grandparent block." If any fail, exit. Note that uncle block headers do not necessarily need to be in the database; they only need to have a common parent block and valid proof of work.

Step 6: Check that the timestamps in the block are last to the next 15 minutes and after the timestamps of its parent block. Check that the difficulty of the block matches the block number. If any check fails, exit.

Step seven: Start with the state of the parent block of this block, then add each valid transaction in this block. Finally, add the miners reward. If the root hash of the resulting state tree does not match the root state in the block header, exit. If it matches, add this block to the database and proceed to the next step.

Step 8: Determine whether to update the difficulty of the block according to the parameter setting. If the difficulty of the new block needs to be adjusted, then start the difficulty adjustment; otherwise, keep the difficulty unchanged.

"The current block" is a pointer stored by miners; it points to the block that miners believe expresses the latest official network state. All requests for balance of account, contract status, and other messages are processed by querying the current block and then responding after computation. If a node is mining, with a slight modification in the process, while completing all the above steps, the node simultaneously mines the current block, using its own collection of transaction lists as the transaction list for the current node.

Chapter 8: Profit Model

8.1 Service Profit Model

In today's world where data volumes are growing exponentially, especially during the transition from the IT information age to the DT data era, data is becoming increasingly important. The value of data is rising, and it is receiving more attention. Data is money, a consensus that has gained traction across various industries and companies, including the artificial intelligence sector. CryptoMind AI platforms can design AI systems tailored to user conditions, capturing consumer preferences and directly addressing their needs.

8.2 Trading Profit Model

For the CryptoMind AI platform, transaction profits are its primary revenue model. Users engage in various activities through artificial intelligence, including socializing, entertainment, and healthcare, among others. When transactions and services occur, the platform charges a fee of 3% to 5%. Although transaction fees are lower than those for stock trading, due to the large market base, when market transactions are frequent, the generated fees can still be substantial. As more users purchase CM AI tokens to access higher-quality services, given that the total supply of tokens remains constant and their scarcity value is significant, this will inevitably lead to greater appreciation of the tokens.

Figure 8-1 CryptoMind AI Profit model

Chapter 9: The Future

In the digital world, whether data comes from the internet or blockchain, our identities will be intelligent. Many institutions will support and promote CryptoMind AI platforms, enabling us to truly own our AI identity neural networks and various applications around these networks. Artificial intelligence brings more and newer possibilities to the digital world, driving explosive growth in information and content, making our lives more efficient.

Of course, artificial intelligence still faces many challenges, and the functionality of neural networks is not yet optimal. As the CryptoMind AI ecosystem advances and develops, with users providing increasingly comprehensive data, the pace of AI evolution will accelerate. The new public blockchain protocol launched by CryptoMind AI has created a brand new, user-centric, decentralized, and fully AI-driven economic system, enabling the value flow of digital assets. CryptoMind AI will serve as a catalyst for AI progress. The next generation of the digital economy is an AI-driven economic system, where AI provides various daily services to users and society. CryptoMind AI will be the spark that propels the future world's vigorous development.

Finally, we believe that artificial intelligence should be decentralized, and the discourse power of mastering AI should be handed over to everyone, rather than a few centralized big platforms, which is the most effective way to help human development and effectively master AI.

Chapter 10: The Council

10.1 Management agencies

To ensure the transparency and openness of the CryptoMind AI project, CryptoMind AI is managed through a top decision-making body, the —— Decision Committee. The committee comprises the Business Committee, Technical Committee, General Affairs Committee, and Community Development Committee. The management structure consists of developers and functional committees. Members of the Decision Committee serve two-year terms. The first term members include core team members of CryptoMind AI, prominent figures in the blockchain industry, legal experts, and early investors. Subsequent members of the Decision Committee are elected by the community.

10.2 Community governance structure

Figure 10-1 Board team structure diagram

Members of the first CryptoMind AI Decision Committee have rich industry experience in blockchain and artificial intelligence. The brief introduction is as follows:

(1) Decision-making Committee

After the term of the decision-making committee expires, all members holding coins in the community will vote to elect no more than 9 core members of the decision-making committee based on the weight calculated by the number of tokens held and the age of the coins. The elected core members will represent the CryptoMind AI community in making important and urgent decisions, and they are required to undergo credit investigation and disclose their compensation during their term.

(2) Executive person in charge

The executive director is elected by the decision-making committee. He/she is responsible for the daily operation and management of the CryptoMind AI community, the coordination of the work of the subordinate committees, and presiding over the meetings of the decision-making committee. The executive director regularly reports to the decision-making committee on the progress of his/her work.

(3) Business Committee

The business committee is responsible for the overall design and planning of the community as well as the introduction of relevant partners.

(4) Technical Committee

The Technical Committee is composed of core developers responsible for the development and review of underlying technologies, as well as product development and review. The committee holds regular project tracking meetings to communicate requirements and project progress. Members of the Technical Committee need to stay informed about community dynamics and hot topics, engage with business participants and token holders within the community, and organize technical exchange meetings irregularly.

(5) General Affairs Committee

The General Affairs Committee is responsible for the use and audit of project funds raised, the management of development personnel compensation, daily operating expenses and audit, etc.

CRYPTOMIND AI

(6) Community Development Committee

The goal of the Community Development Committee is to serve the community, responsible for the promotion of CryptoMind AI platform services, open source projects and publicity. The committee is responsible for all community announcements and media cooperation.

(7) Financial management of CryptoMind AI

CryptoMind AI The decision committee is committed to using all raised tokens for community development and construction.

(8) Audit by CryptoMind AI

Due to the special nature of travel coins, it is difficult for existing companies and institutions of various forms to be regulated under the existing system. In order to ensure the governance work of CryptoMind AI and the transparency of token use, the CryptoMind AI decision-making committee will hire professional audit agencies to conduct audits.

Chapter 11, Technical Team

1. CryptoMind AI Foundation

CryptoMind AI Foundation is a non-profit organization. The foundation sets up relevant departments to devote itself to the research and development of CryptoMind AI, and manages the open source of CryptoMind AI, community construction, review of feature suggestions, etc.; at the same time, it is committed to the financial, team building, external relations, etc., so that the project can run better.

2. Team members

CryptoMind AI The team has many years of experience in the digital currency market. The following is an introduction to the team members:

Luois Cheung

CTO, PhD. His research interests include distributed computing technology. He has published more than 30 high-level papers and written 4 monographs. He has presided over and participated in more than 10 high-level scientific research projects. He has been engaged in P2P system architecture design, and has a deep understanding of the topology of peer-to-peer computing with double-layer structure.

Roger Michey

Chief Architect, PhD. His research interests include distributed computing, and he has published more than 20 high-level papers.

He has a deep understanding of the scalability, reliability and elastic optimization of distributed systems, as well as a deep understanding of the underlying technology and working principle of blockchain and practical operation experience.

CRYPTOMIND AI

Jason Loong

CryptoMind AI Head of the Security Division, Ph.D. in Computer Science and Technology. Dedicated to research on blockchain and cybersecurity, with years of foundational research experience in smart contracts. Has led and participated in over ten research projects, including those funded by the National Natural Science Foundation and national-level scientific research programs. Published more than 30 academic papers in SCI and EI journals.

Andy

CryptoMind AI Head of Ecological Construction, Ph.D. in Computer Technology. Research focuses on machine learning and intelligent information processing, with practical experience in large-scale information systems and distributed applications. Possesses extensive product development and system design experience. Early starter in blockchain research, has profound insights into blockchain applications and ecosystem construction, and has published over 20 high-level papers.

Storm Zhang

Master of Engineering, Senior Programmer, and Blockchain Technology Expert. Worked for many years at IBM (International Business Machines Corporation) Systems Technology Department and Sina, with rich experience in Hadoop and MapReduce development. Engaged with Bitcoin in 2012, familiar with cryptocurrency principles and exchange wallet storage solutions. Currently focuses on smart contracts and blockchain applications.

Chapter 12: Appendix

12.1 Risk Disclosure

There are risks involved in the development, maintenance, and operation of the CryptoMind AI platform, many of which are beyond the control of the development team. In addition to the other contents described in this white paper, participants are fully aware and agree to accept the following risks:

Market Risk

The price of the token is closely related to the overall situation of the digital currency market. If the market is generally sluggish or affected by other uncontrollable factors, the token may remain undervalued for a long time even if it has good prospects.

Regulatory Risk

As blockchain technology is still in its early stages, there are no global regulatory documents regarding pre-requirements, trading requirements, information disclosure requirements, or lock-up requirements during the fundraising process. Moreover, it is unclear how current policies will be implemented, and these factors may have uncertain impacts on the investment and liquidity of the project. Blockchain technology has become a major regulatory target in many countries worldwide. If regulatory bodies intervene or exert influence, CryptoMind AI may be affected, such as legal restrictions on the use or sale of digital coins, which could hinder or even directly terminate the development of the CryptoMind AI application.

Competition Risk

There are numerous projects in the blockchain field, and the competition is intense, with strong market competition and operational pressure. With the development of information technology and mobile internet, the emergence and expansion of other application platforms will pose continuous operational pressure and certain market competition risks to the CryptoMind AI project.

Talent Drain Risk

The CryptoMind AI project has gathered a technical team and advisory experts with

leading advantages and rich experience in their respective professional fields, including long-term professionals in the blockchain industry and a core team with extensive experience in internet product development and operation. The stability of the core team and advisory resources is crucial for CryptoMind AI to maintain its core competitiveness in the industry. In future development, it is possible that core members may leave, and the loss of core personnel or the advisory team may affect the stable operation of the platform or bring certain adverse effects on future development.

Hacker or Theft Risk

Hackers or other organizations or countries may have the possibility to disrupt the CryptoMind AI application or functions in any way, including but not limited to denial of service attacks, Sybil attacks, phishing, malware attacks, or consensus attacks.

Uninsured Loss Risk

Unlike bank accounts or accounts of other financial institutions, assets stored in CryptoMind AI accounts are usually not insured. In the event of any loss, no public individual or organization will underwrite your loss.

Core Protocol-Related Risk

CryptoMind AI is currently developed based on a specific blockchain. Although the team will select the most secure and stable blockchain as the infrastructure, any failure, unexpected functional issues, or attacks on the chain may cause CryptoMind AI to stop working or lose functionality in unpredictable ways.

Systemic Risk

Risks caused by fatal flaws overlooked in the software or large-scale failures of global network infrastructure. Although some of these risks will be significantly reduced over time, such as fixing vulnerabilities and breaking through computational bottlenecks, other risks remain unpredictable, such as political factors or natural disasters that may cause partial or global internet disruptions.

Other Unforeseen Risks

Cryptography-based digital coins are a brand-new technology. In addition to the risks mentioned in this white paper, there are some risks that the founding team has not yet mentioned or anticipated. Furthermore, other risks may suddenly appear or manifest in combinations of already mentioned risks.

12.2 Disclaimer

This document is for informational purposes only. The content of this document is for reference only and does not constitute any investment advice, investment intention, or inducement to invest. This document does not constitute or is understood to provide any buying or selling behavior, nor is it any form of contract or commitment.

Given unpredictable circumstances, the goals listed in this white paper may change. Although the team will strive to achieve all the goals outlined in this white paper, all individuals and groups purchasing tokens will bear their own risks. The content of the document may be adjusted in new versions of the white paper as the project progresses. The team will announce updates through website announcements or new versions of the white paper.

This document is intended for specific individuals who actively request information about the project and does not constitute any future investment guidance, nor is it any form of contract or commitment.

CryptoMind AI explicitly states that it will not be responsible for any direct or indirect losses caused by participants, including:

- (1) Once participants join the digital asset distribution plan, they indicate that they understand and accept the project risks and are willing to bear all corresponding consequences personally. The project team explicitly states that it does not promise any returns and will not bear any direct or indirect losses caused by the project.
- (2) The digital assets involved in this project are virtual digital codes used in transactions and do not represent project equity, profit rights, or control rights.
- (3) Due to the many uncertainties of digital currency itself (including but not limited to: the regulatory environment of various countries towards digital currency, industry incentive competition, and technical vulnerabilities of digital currency), we cannot guarantee that the project will be successful. There is a certain risk of project failure, and the digital assets of this project also have the risk of being zeroed out.

CRYPTOMIND AI

Although the team will strive to solve potential problems in the project's advancement, there are still policy uncertainties in the future. Everyone must understand all aspects of blockchain before supporting it and participate rationally with full awareness of the risks.

